Encapsulation Solutions for Year 2000 Compliance:

A Summary

Don Estes
2000 Technologies Corporation

This article discusses two variations of time-shifting strategies for year 2000 compliance:
data encapsulation and program encapsulation. A summary of the complete article fol-
lows; the detailed article, containing specific strategies and examples, can be found on the
CrossTaLk Web site at http://www.stsc.hill.af. mil/CrossTalk/crostalk.html.

tandard technical strategies
Sto achieve year 2000 (Y2K) com-

pliance include replacement, date
expansion, and various forms of
windowing. Recently added to this list
are time-shifting strategies, which sig-
nificantly reduce costs, business risks,
and time to implement and test. All of
the benefits of encapsulation result from
two central facts:

« Analysis and implementation efforts
are minimal.

« Itis the inverse of the procedure used
to age data into the future to estab-
lish future data compliance; once one
successfully proves current-year re-
gression testing, there is an implicit
establishment of future-dated regres-
sion testing for the length of time
constant employed.

A different implementation of the en-
capsulation concept can be employed as
a test harness to perform automated Y2K
testing, including dynamic future date
data aging. A description of the auto-
mated testing implementation is
planned for a future CrossTaLK article.
Time-shifting strategies dramatically
reduce the costs of testing by eliminating
the need to build future-dated test cases,
and because they use a complementary
automated regression testing facility,
they are bound into the program logic

© 2000 Technologies Corp., 1997. Permission is
granted for reproduction and distribution of this
and the Internet document provided it is complete,
unmodified, and retains all identification includ-
ing this statement, and provided that notification
of recipient is sent to the E-mail address at the end
of this article. All other reproduction and distribu-
tion is expressly forbidden.

January 1998

with the encapsulation logic. The risk
profile also is minimal because the rela-
tively small amount of affected program
code is at the boundary between the
program and the outside data storage.
Because the file formats do not change,
it also has minimal implementation and
deployment impact.

The automation of date expansion
and procedural logic solutions offer
many of the implementation advantages
of encapsulation, including cost reduc-
tion. Limited windowing methods can
compete with encapsulation on an
implementation cost basis for many
applications. However, in the area of
testing, encapsulation is in a class by
itself. Only encapsulation can bypass the
expense of future-dated testing alto-
gether and, through automation, bypass
the manual construction of unit test
data. As the event horizon draws near,
this aspect of encapsulation will domi-
nate strategy decisions.

Data Encapsulation vs. Program
Encapsulation
The difference between data and pro-
gram encapsulation is in what you
change. The mnemonic rule is you en-
capsulate what you do not change. So, if
you are changing programs but not data,
you are performing data encapsulation.
But if you are changing data but not
programs, you are performing program
encapsulation. A hybrid of the two inter-
poses a layer between program and data
to perform the time shifting.
Encapsulation strategies are similar to
windowing strategies in that a two-digit

year is maintained. However, procedural
logic strategies infer the century from
the data and operate while spanning the
century boundary. Time-shifting strate-
gies, by contrast, shift the data back in
time to avoid the century boundary
altogether. The essential problem with
maintaining a two-digit year is that 2000
> 1999 but 00 < 99. By shifting the
dates back in time, typically by a mul-
tiple of 28 years, we end up with 1972 >
1971 and 72 > 71, which solves the
problem. As long as all dates are shifted
consistently, we receive the same results
for the same input, and the applications
will work until 2027 or 2055. Once all
stored data are in the 21st century, the
time shift can be turned off, at which
time the application will work until
2100. This can be considered a perma-
nent fix.

One absolute requirement with this
method is that no two-digit years can be
stored from before 1929 (for a 28-year
shift) for any date used in a comparison
or a calculation, although there are spe-
cial case exceptions to this rule. The
reason is that once shifted, the date data
must all lie in the same century. This
requirement does not apply to dates used
merely for storage and retrieval.

Encapsulation is unique because the
indeterminacy of assessment is elimi-
nated; this is the major source of delay,
even in windowing and expansion
projects using automated assessment
tools of great power. The single data
entry and exit points in each program
are vastly fewer in number and are essen-
tially decoupled from each other, so that

CRrOSSTALK The Journal of Defense Software Engineering 9



Year 2000

one need only examine those points and
the data flowing through them to answer
all questions required for encapsulation.
If any doubts remain, one need only
dump the relevant data files or tables
and look at them.

Data encapsulation works on a pro-
gram-by-program basis, as compared to
program encapsulation, which works on
a system-by-system basis. As a result,
within the same system it is possible to
use data encapsulation for one program,
a standard windowing solution for an-
other, and to leave a third completely
unchanged because date data flows
through the program without being
processed in any way. This may be im-
portant for sites that plan to use encap-
sulation as a short-term fix while prepar-
ing a more comprehensive solution via
windowing, expansion, or replacement.

Program encapsulation may have an
implementation advantage over data
encapsulation, although this will be
significant primarily in larger projects.
This is because programs that do not
cross the time-warp zone boundary
usually do not require modification.

Encapsulation Metrics

Data encapsulation was first proposed by
a major defense contractor in 1992, and
we are now aware of some two dozen
pilot and full projects that use the
method. In addition, both program and
data encapsulation can now be auto-
mated. Early metrics show an average of
1,000 to 2,000 lines of code per day per
programmer for manual data encapsula-
tion implementation, and 10 times this
for automated implementation. Program
encapsulation can be even more effi-
cient, particularly for larger projects.

Conclusion

Encapsulation, although a new strategy
relative to expansion, replacement, or
windowing, is rapidly proving itself as
the most efficient in terms of time and
cost and will increasingly be the center
of consideration as we move toward our
time horizon for failure. ¢

About the Author

Don Estes is chief technology officer for
2000 Technologies Corporation, for
whom he has designed and implemented
both a data encapsulation and an auto-

Call for Articles

mated testing system.
He also works closely
with vendors of limited
windowing, program
encapsulation, and
object code remediation
: systems.

He has been involved with COBOL and
database applications for 25 years and
database and mainframe performance
tuning for 10 years. For the last seven
years, he has helped design and execute
projects for the mass modification of large
bodies of source code, primarily for plat-
form migration, using state-of-the-art
automated source language transformation
technologies and automated testing meth-
ods. He is a regular contributor to Peter
de Jager’s Year 2000 mail list, where he is
known for his contributions relating to
Y2K rapid compliance strategies and
automated testing. Estes is a graduate of
Massachusetts Institute of Technology in
physics, with a postgraduate degree from
the University of Texas in educational

psychology.

2000 Technologies Corporation

114 Waltham Street, Suite 19
Lexington, MA 02173

Voice: 781-860-5277, 1-800-756-8046
E-mail: info@2000technologies.com

If your experience or research has produced information
that could be useful to others, Crosstaik will get the word out.
Not only is CrossTak a forum for high-profile leaders, it is an
effective medium for useful information from all levels within
the Department of Defense (DoD), industry, and academia.

Published monthly, CrossTaik is an official DoD periodical
distributed to over 19,000 readers, plus uncounted others
who are exposed to the journal in offices, libraries, the
Internet, and other venues. CrossTaik articles are also regularly
reprinted in other publications.

We welcome articles on all software-related topics, but
are especially interested in several high-interest areas.
Drawing from reader survey data, we will highlight your most
requested article topics as themes for 1998 Crosstalk iSSUes.
In future issues, we will place a special, yet nonexclusive,
focus on

Internet/Intranet
June 1998
Article Submission Deadline: Feb. 2, 1998

Project Management
July 1998
Avrticle Submission Deadline: March 2, 1998

10 CrossTaLk The Journal of Defense Software Engineering

Measure and Metrics
August 1998
Article Submission Deadline: April 6, 1998

Look for additional announcements that reveal more of
our future issues’ themes. We will accept article
submissions on all software-related topics at any time; our
issues will not focus exclusively on the featured theme.

Please follow the Guidelines for CrosstaLk Authors, available
on the Internet at http://www:.stsc.hill.af.mil/. Hard copies of
the guidelines are also available upon request. All articles
must be approved by the Crosstaik Editorial Board prior to
publication.\We do not pay for articles. Send articles to

Ogden ALC/TISE

ATTN: Heather Winward, Crosstalk Features Coordinator

7278 Fourth Street
Hill AFB, UT 84056-5205

Or E-mail articles to winwardh@software.hill.af.mil/.
For additional information, call 801-777-92309.

Tracy Stauder
Managing Editor

January 1998



